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How Many Notions of ª Sharpº ?
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1. INTRODUCTION

To what extent is ª sharp/unsharpº an unsharp, ambiguous distinction?

In the framework of the unsharp approach to quantum theory different

definitions of ª sharp physical propertyº can be proposed. One can distinguish

two basic kinds of characterizations:

(i) Purely algebraic definitions, which only refer to the algebraic

structure of the quantum events;

(ii) Semantic-statistical definitions, which also refer to the relations

between events and states.

In the present paper we will only discuss case (i). Case (ii) will be the subject

of another paper.

Different algebraic environments give different answers to the question,

ª What is the structure of the quantum events?º A minimal structure is repre-

sented by an effect algebra.4 This is a partial structure with two privileged
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elements (the certain and the impossible event), where the partial operation

M1 represents an exclusive disjunction.

Definition 1.1. An effect algebra is a partial structure ! 5 ^ A, M1 , 1,
0& where M1 is a partial binary operation on A. When M1 is defined for a pair

a, b P A, we will write $ (a M1 b). The following conditions hold:

(i) Conditional commutativity:

$ (a M1 b) Þ $ (b M1 a) and a M1 b 5 b M1 a.

(ii) Conditional associativity:
[ $ (b M1 c) and $ (a M1 (b M1 c))] Þ [ $ (a M1 b) and $ ((a M1 b) M1
c) and a M1 (b M1 c) 5 (a M1 b) M1 c].

(iii) Strong excluded middle:

For any a, there exists a unique x such that a M1 x 5 1.

(iv) Weak consistency:

$ (a M1 1) Þ a 5 0.

An orthogonality relation ’ , a partial order relation v , and a generalized

complement 8 can be defined in any effect algebra:

(i) a ’ b iff a M1 b is defined in A.

(ii) a v b iff $ c P A such that a ’ c and b 5 a M1 c.

(iii) The fuzzy complement of a is the unique element a8 such that
a M1 a8 5 1 (the definition is justified by the strong excluded

middle condition).

Consequently, any effect algebra gives rise to an involutive bounded

poset (called also de Morgan poset) ^ A, v , 8, 1, 0& .
Let us now consider the concrete set E(*) of all effects in a Hilbert

space *. By effect we mean any linear bounded operator E such that 0 v E
v 1. The elements 0 and 1 are the null and the identity projections, respectively,

while the partial order relation v is defined as follows: E v F iff for any density

operator D, Tr(DE ) # Tr(DF ) (in other words, the probability assigned by

state D to the effect E is less than or equal to the probability assigned by D
to the effect F ).

In order to induce the structure of an effect algebra on E(*), it is

sufficient to define a partial sum M1 as follows: $ (E M1 F ) iff E 1 F P E(*),

where 1 is the usual sum operation. Further, $ (E M1 F ) Þ E M1 F : 5 E 1
F. It turns out that the structure ^ E(*), M1 , 1, 0 & is an effect algebra, where

the fuzzy complement of any effect E is E 8 : 5 1 2 E.
Any abstract effect algebra ! 5 ^ A, M1 , 1, 0& can be naturally extended

to a total structure called a quantum MV-algebra (abbreviated as QMV-

algebra) [5].

Both QMV-algebras and MV-algebras are total structures having the

following form:
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} 5 (M, % , 8, 1, 0)

where (i) 1, 0 represent the certain and the impossible propositions (or events);
(ii) 8 is the negation operation; (iii) % represents a disjunction (or) which is

generally nonidempotent (a % a Þ a). A (generally nonidempotent) conjunc-

tion (and ) is then defined via the de Morgan law: a ( b : 5 (a8 % b8)8. On

this basis, a pair consisting of an idempotent conjunction et ( ù ù ) and of an

idempotent disjunction vel ( ø ø ) is then defined:

a ù ù b : 5 (a % b8) ( b; a ø ø b : 5 (a ( b8) % b

Definition 1.2. An MV-algebra is a structure } 5 (M, % , 8, 1, 0), where

% is a binary operation, 8 is a unary operation, and 0 and 1 are special
elements of M, satisfying the following axioms:

(MV1) (a % b) % c 5 a % (b % c)

(MV2) a % 0 5 a
(MV3) a % b 5 b % a
(MV4) a % 1 5 1
(MV5) (a8)8 5 a
(MV6) 08 5 1
(MV7) a % a8 5 1
(MV8) (a8 % b)8 % b 5 (a % b8)8 % a

In other words, an MV-algebra represents a particular weakening of a

Boolean algebra, where % and ( are generally nonidempotent.

A partial order relation can be defined in any MV-algebra:

a # b iff a ù ù b 5 a (1.1)

Let us now go back to our concrete effect structure ^ E(*), M1 , 1, 0& .
The partial operation M1 can be extended to a total operation % that behaves

like a collapsed sum. For any E, F P E (*)

E % F 5 H E 1 F if $ (E M1 F )

1 otherwise

Further, let us put E 8 5 1 2 E. The structure %(*) 5 ^ E(*), % , 8, 1,

0& turns out to be ª very closeº to an MV-algebra. However, something is

missing: %(*) satisfies the first seven axioms of our definition (MV1)±

(MV7); at the same time one can easily check that the axiom (MV8) (usually
called the ª è ukasiewicz axiomº ) is violated. As a consequence, the è ukasie-

wicz axiom must be conveniently weakened to obtain a representation for

our concrete effect structure. This can be done by means of the notion of a

QMV-algebra.
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Definition 1.3. A quantum MV-algebra (QMV-algebra) is a structure

} 5 (M, % , 8, 1, 0) that satisfies, besides axioms (MV1)±(MV7) of MV-

algebras, the following axiom (which represents a weakening of (MV8)):

(QMV8) a % [(a8 ù ù b) ù ù (c ù ù a8)] 5 (a % b) ù ù (a % c)

The operations ù ù and ø ø of a QMV-algebra } are generally noncommu-

tative. As a consequence (differently from MV-algebra), they do not represent

lattice operations. One can prove:

Theorem 1.1 [5]. A QMV-algebra } is an MV-algebra iff for all a, b P
M: a ù ù b 5 b ù ù a.

At the same time, any QMV-algebra } 5 (M, % , 8, 1, 0) gives rise to

an involutive bounded poset ^ M, # , 8, 1, 0& , where the partial order relation

is defined as in the MV case by (1.1).

Theorem 1.2. The structure %(*) 5 ^ E(*), % , 8, 1, 0& is a QMV-algebra.

A concrete effect poset, whose support is E(*), can be naturally extended

to a richer structure, equipped with a new complement
,
, that has an intuition-

istic-like behavior:

(**) E
,

is the projection operator PKer(E) whose range is the kernel
Ker(E ) of E, consisting of all vectors that are transformed by the operator

E into the null vector.

By definition, the intuitionistic complement of an effect is always a

projection. In the particular case where E is a projection, it turns out that E 8
5 E

,
. The structure ^ E(*), v , 8,

,
, 1, 0& is a particular example of a

Brouwer ± Zadeh poset [1].

Definition 1.4. A Brouwer ± Zadeh poset (simply a BZ-poset) is a structure

^ B v , 8, ,
, 1, 0& , where

(1) ^ B v , 8, 1, 0& is a Kleene poset (i.e., a de Morgan poset s.t.: a v

a8 and b v b8 Þ a v b8).
(2)

,
is a 1-ary operation on B that behaves like an intuitionistic

complement: (i) a u a , 5 0; (ii) a v a , ,
; (iii) a v b { b , v a ,

(where u is the inf ).

(3) The following relation connects the fuzzy and the intuitionistic

complement: a
, 8 5 a

, ,
.

We will use the following abbreviations: E A for the class of all effect

algebras, Q M V for the class of all QMV algebras, M V for the class of all

MV algebras, B Z for the class of all BZ posets, and E H for the class of all

QMV algebras based on a concrete E(*).
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2. ALGEBRAIC NOTIONS OF ª SHARPº

Suppose a QMV-framework. We introduce six definitions of ª sharp
element.º Let } 5 ^ }, % , 8, 1, 0& P Q M V and let a P M.

Definition 2.1:

(i) a is principal (or sharp1) Û " b, c P M: b, c # a and b # c8 Þ
b % c # a.

(ii) a is Aristotle-sharp (or Aristotelian or sharp2) Û a u a8 5 0 (in
other words, a satisfies the noncontradiction principle).

(iii) a is è ukasiewicz-sharp (or sharp3) Û a ù ù a8 5 0.
(iv) a is strongly è ukasiewicz-sharp (or sharp4) Û a u a8 5 0 and

a ù ù a8 5 a8 ù ù a.
(v) a is Boole-sharp (or Boolean or sharp5) Û a % a 5 a (in other

words the sum operation is idempotent).
(vi) a is strongly Boolean (or sharp6) Û {b ) b # a} is an ideal of }.

Notice that the definitions of principal and Aristotelian element can be
defined also in the case of an effect algebra.

Theorem 2.1. " a P M: a is principal Þ a is Aristotelian.

Proof. Let a be a principal element of M. Suppose b # a, a8. We want
to show that b 5 0. Now, a # a and b # a8. Thus, a % b # a since a is
principal. Therefore, a % b 5 a. By the cancellation law, there follows
b 5 0. n

Let Es(*) be the class of all special effects of a Hilbert space *.5 An
effect E is called special iff either E is trivial (1 or 0) or E satisfies the
following condition: there exist two density operators D1 and D2 such that
Tr(D1E ) , 1/2 and Tr(D2E ) . 1¤2. It is easy to see that Es(*) is closed
under the operation 8.

Let us define the following operation over Es(*):

E % F 5 H E 1 F if E 1 F P Es(*)
1 otherwise

(2.1)

It turns out that the structure %s(*) 5 ^ Es(H ), % , 8, 1, 0 & is a QMV-algebra
s.t. " E, F P Es(H ): if E # F, then E v F, where

E v F iff for any density operator D: Tr(DE ) # Tr(DF ) (2.2)

Notice that the inverse relation does not generally hold.

5 Special effects are also called regular effects or unsharp properties [3].
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The set of all special effects is closed under the intuitionistic-like comple-

ment
,

defined according to (**). However, the structure ^ Es(*), # , 8,
,
, 1,

0& is not a BZ poset since in general E Ü E
, ,

. For example, let E : 5 a P,
where a P (1/2, 1) and P is any nontrivial projection. It turns out that E %
E ,

is an effect, which is not special. Consequently: E Ü E , ,
.

Theorem 2.2. Aristotelian Þ ¤ principal.

Proof. Let %s( C 3) be the QMV-algebra of all special effects of C 3. Let

us consider the following effect:

E : 5 P1 1 1±6P2 1 P3

where {P1, P2, P3 } is a set of pairwise orthogonal (w.r.t. the partial ordering
v ) projections of C 3. One can readily see that E is a special effect. First, we
show that E u E 8 5 0, w.r.t. the partial ordering # . Suppose F # E, E 8.
Then F # F 8. Thus, F v F 8, so that F v 1±2 1. Since F is special, it follows

that F 5 0. Accordingly, E is Aristotelian. We show now that E is not

principal. Let us consider the following two effects:

F : 5 1±6 P1 1 1±6 P2 1 2±3 P3 and G : 5 5±6 P1 1 1±6 P2 1 1±3 P3

Clearly, F 1 G 5 P1 1 1±3 P2 1 P3 P Es( C 3). An easy computation shows
that F # G8 and F, G # E. However,

F % G 5 P1 1 1±3 P2 1 P3 Ü E n

The following theorem shows that the notions ª principalº and ª Aristote-

lianº are equivalent whenever restricted to the concrete QMV-algebra of

all effects.

Theorem 2.3. " E P E(*): E is a projection Û E is principal Û E
is Aristotelian.

Proof. E is a projection Û E is Aristotelian [9].
By Theorem 2.1, it suffices to show that if an effect E is a projection,

then E is principal. Let P be any projection of E(*) and let E, F be any two

effects s.t. E # F 8 and E, F # P. By definition, E % F 5 E 1 F. By [6],

E 5 PE 5 EP and F 5 PF 5 FP (2.3)

Thus,

(E % F )P 5 (E 1 F )P 5 P(E % F )

Hence, by [6], E % F # P. n

Theorem 2.4. Let } 5 ^ M, % , 8, 1, 0& be a QMV-algebra. The following

conditions are equivalent " a P M:
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(i) a is è ukasiewicz-sharp (sharp3).

(ii) a is strongly è ukasiewicz-sharp (sharp4).

(iii) a is Boolean (sharp5).
(iv) a is strongly Boolean (sharp6).

Proof. Conditions (iii) and (iv) are clearly equivalent.

(i) Þ (ii). Suppose a ù ù a8 5 0. By [5], a8 % (a ù ù a8) 5 a8 % a8, so

that a8 % a8 5 a8. Hence: a8 ù ù a 5 0 5 a ù ù a8. It remains to show that

a u a8 5 0. Suppose b # a, a8. By [5], b # a ù ù a8 5 0.

(ii) Þ (iii). Suppose a8 ù ù a 5 a ù ù a8 and a u a8 5 0. By [4], a ù ù
a8 # a8 and a ù ù a8 5 a8 ù ù a # a. Thus, a ù ù a8 5 0. By [5], it follows
that a % a 5 a.

(iii) Þ (i). Straightforward. n

Theorem 2.5. Let } be a QMV-algebra. The following property holds

" a P M: a is è ukasiewicz (or strongly è ukasiewicz or Boolean or strongly

Boolean) Þ a is principal.

Proof. It follows from the monotonicity of % . n

The following theorem shows that a principal element need not be

Boolean (equivalently, è ukasiewicz, strongly è ukasiewicz, strongly

Boolean).

Theorem 2.6. Any nontrivial projection in E(*) is principal, but not

Boolean.

Proof. Let P be any nontrivial projection. Then, by Theorem 2.3, P is

principal. However (by definition of % ), P % P 5 1 Þ P. n

Theorem 2.7. The six notions of ª sharpº collapse in the case of MV-

algebras.

Proof. Every MV-algebra is a QMV-algebra. Thus, by Theorem 2.1

and Theorem 2.4, it is sufficient to show that every Aristotelian element is

è ukasiewicz-sharp. In every MV-algebra the operation ù ù coincides with the

inf. Accordingly, if a u a8 5 0, then also a ù ù a8 5 0. n

Summing up:

Q M V

è ukasiewicz Û Strong è ukasiewicz

ß Ý ¤
Principal

Û Boole Û Strong Boole

Þ Aristotle

Ü ¤
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E H

è ukasiewicz Û Strong è ukasiewicz

ß Ý ¤
Principal

Û Boole Û Strong Boole

Û Aristotle

M V

Principal

m
Strong è ukasiewicz

Û

Û

Aristotle

Boole

Û

Û

è ukasiewicz

m
Strong Boole

Let us now refer to effect algebras that are also BZ posets (BZ effect

algebras). This permits us to define a new notion of sharpness:

Definition 2.2. An element a is called Brouwer-sharp (or Brouwerian
or sharp7) Û a 5 a

, ,
.

Theorem 2.8. Brouwer Þ Aristotle.

Proof. Suppose a is Brouwer-sharp. Then a8 5 a , , 8 5 a , , , 5 a ,
.

Let b be any element s.t. b v a, a8. Since a8 5 a ,
, there follows b v a u

a
, 5 0. n

It should be noticed that every effect algebra ! 5 ^ A, M1 , 1, 0& can be

trivially organized into a BZ effect algebra. It is sufficient to define the
operation

,
in the following way:

a
, 5 H 1 if a 5 0

0 otherwise

The structure ! 5 ^ A, M1 ,
,
, 1, 0& turns out to be a BZ effect algebra. In

this case, the class of all Brouwerian elements contains only 0 and 1.

Theorem 2.9. Aristotle Þ ¤ Brouwer.

Proof. Let ! be any orthoalgebra containing more than two elements.

We recall that an orthoalgebra is an effect algebra where every element is

Aristotelian. Equip ! with the trivial Brouwer complement. Thus, every
nontrivial element of ! is Aristotelian but non-Brouweri an. n

Gudder [7] has given a characterization of the class of effect algebras

that give rise to BZ effect algebras where the notion of Brouwerian and

Aristotelian sharp element coincide.

Theorem 2.1 0. Let E P E(*): E is Aristotelian Û E is Brouwerian.

Proof. Straightforward. n
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